Performance and durability of Pt/C cathode catalysts with different kinds of carbons for polymer electrolyte fuel cells characterized by electrochemical and in situ XAFS techniques.
نویسندگان
چکیده
The electrochemical activity and durability of Pt nanoparticles on different kinds of carbon supports in oxygen reduction reactions (ORR) were investigated using rotating disc electrodes (RDE) and the membrane electrode assemblies (MEA) of polymer electrolyte fuel cells (PEFC). The mass activity of Pt/C catalysts (ORR activity per 1 mg of Pt) at the RDE decreased, according to the type of carbon support, in the following order; Ketjenblack (KB) > acetylene black (AB) > graphene > multiwall carbon nanotube (MW-CNT) > carbon black (CB), whereas the average size of the Pt nanoparticles and the surface specific activity (ORR activity per electrochemical surface area) did not vary significantly between these carbon supports. These results indicate that the different mass activities of the Pt/C catalysts may originate from the differences in the fraction of Pt on the carbon supports which is available for utilization. The durability of the MEAs of the top two active catalysts Pt/KB and Pt/AB among the five catalysts was examined based on ORR performance, TEM and in situ XAFS. It was found that the performance of the Pt/KB cathode catalyst in PEFC MEA decreased significantly over 500 accelerated durability test (ADT) cycles, whereas the performance of the Pt/AB cathode catalyst in PEFC MEA did not decrease significantly during 500 ADT cycles, it was also found that the Pt/AB possesses 8 times higher durability compared with the Pt/KB. In situ Pt LIII-edge XAFS data in the ADT cycles and stepwise potential operations revealed the different oxidation-reduction behaviors of the Pt nanoparticles on the KB and AB supports. The Pt/KB was oxidized to form surface PtO layers more easily than the Pt/AB in the increasing potential operation from 0.4 VRHE to 1.4 VRHE, and the surface PtO layers of the Pt/AB were reduced to the metallic Pt state more readily than those of the Pt/KB in the decreasing potential operation from 1.4 VRHE to 0.4 VRHE. The XAFS analysis for the Pt valences and the coordination numbers of Pt-O and Pt-Pt demonstrated that the Pt/AB catalyst is more durable than the Pt/KB catalyst in PEFC MEAs.
منابع مشابه
Synthesized Bimetallic Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells
In the present study, a step by step process was applied to synthesize bimetallic electrocatalyst (Ru and Pt on VulcanXC-72R). This process can reduce the amount of platinum and increase the gas diffusion electrode (GDE) performance in the cathodic reaction of polymer electrolyte membrane fuel cells (PEMFCs). Using the impregnation by hydrothermal synthesis method, a series of electrocatalysts ...
متن کاملHigh Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells
Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...
متن کاملRecent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells
Recently mesoporous materials have drawn great attention in fuel cell related applications, such as preparation of polymer electrolyte membranes and catalysts, hydrogen storage and purification. In this mini-review, we focus on recent developments in mesoporous electrocatalysts for polymer electrolyte membrane fuel cells, including metallic and metal-free catalysts for use as either anode or ca...
متن کاملUsing the Palladium as core and Platinum as shell for ORR
In this work, electrocatalyst with core-shell structure (Pd as core and Pt as shell on VulcanXC-72R) was synthesis. Not only this structure can reduce the amount of platinum but it also can increase the gas diffusion electrode (GDE) performance in cathode reaction (Oxygen Reduction Reaction or ORR) of polymer electrolyte membrane fuel cell (PEMFC). To this meaning, one series of electrocatalyst...
متن کاملPt-free cathode catalysts prepared via multi-step pyrolysis of Fe phthalocyanine and phenolic resin for fuel cells.
Pt-free cathode catalysts for polymer electrolyte membrane fuel cells have been prepared by multi-step pyrolysis of FePc and PhRs, in the best of which show extensively high initial cell performance and good durability compared to other present precious-metal-free cathode catalysts to date.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 21 شماره
صفحات -
تاریخ انتشار 2014